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Introduction

• Pure water is distilled from waste water in International 
Space Station

• Distillation assembly consists of evaporator, compressor 
and condenser

• Vapor is periodically purged from the condenser to avoid 
vapor accumulation 

• Purged vapor is condensed in a tube by coolant water prior 
to entering purge pump

• The paper presents a condensation model of purged vapor 
in a tube 
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UPA Simplified Schematic
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Problem Description

Superheated
Water Vapor
Pinlet = 0.95 psia
Tinlet = 101°F

Saturated
Water Vapor
Poutlet = 0.5 psia

Touter wall = 65°F

Inner Tube Diameter = 0.125 inch
Outer Tube Diameter = 1 inch
Length = 4 inches
Material is Titanium

Calculate the Quality and Heat Transfer Properties
of the Water as it Condenses in the Pipe

Model consists of 2 Boundary Nodes and 28 Internal Nodes
and Models Conduction through the Tube Wall



Generalized Fluid System Simulation Program
(GFSSP)

= Boundary Node

= Internal Node

= Branch

H2

N2

O2

H2 + O2 +N2

H2 + O2 +N2

GFSSP calculates 
pressure, temperature, 
and concentrations at 
nodes and calculates 
flow rates through 
branches.



GFSSP
Finite Volume Method

• Finite Volume Method is based on conservation principle  
of Thermo-Fluid Dynamics

• In Classical Thermodynamics we analyze a single control 
volume

• In Finite Volume Method, flow domain is discretized into 
multiple control volumes and a simultaneous analysis is 
performed

• Finite Volume Method can be classified into two 
categories:
– Navier-Stokes Solution (Commonly known as CFD)
– Network Flow Solution (NFS)



GFSSP
Finite Volume Method
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GFSSP Process Flow Diagram

• Command line preprocessor

• Visual preprocessor 

Preprocessor

Solver & Property 

Module User Subroutines

Input Data

File

New Physics

• Time dependent  

process

• non-linear boundary

conditions

• External source term

• Customized output
Output Data File

• Equation Generator

• Equation Solver

• Fluid Property Program
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GFSSP Solution Scheme

Mass Momentum

Energy

Specie

State

Simultaneous

Successive Substitution

SASS : Simultaneous Adjustment 
with Successive Substitution

Approach : Solve simultaneously 
when equations are strongly 
coupled and non-linear

Advantage : Superior 
convergence characteristics with 
affordable computer memory



Condensation Heat Transfer



Heat transfer correlations 

Akers, et al, 1959 – Annular Correlation
Boyko and Kruzhulin, 1967 – Annular Correlation
Chato, 1962 – Stratified Correlation
Soliman, et al, 1968 – Generalized Correlation

Chose Soliman correlation for its stability and generality

Stratified CondensationAnnular Condensation



Soliman Correlation for Heat Transfer Coefficient for
Annular Flow Condensation
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Fm: Effect of momentum changes in the flow
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Solid-to-fluid heat transfer

Inlet Outlet

Tsolid = Tcoolant

r

Solid Node

Fluid Node
Internal

Boundary
Fluid Node

Fluid Branch

Tsolid (r)

Qcondensation = h A (Tfluid-Tsolid)



Plot of Quality vs. Pipe Location
for Selected Heat Transfer Correlations
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Heat Transfer Coefficient vs. Pipe Location
Soliman Correlation for Grid Size 40 and R Value 1
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Quality Comparison for Different Tube Grid Resolution
(Soliman Correlation)
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Outer Wall Temperature Comparison for Different Tube Grid Resolution
(Soliman Correlation)
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Conclusions

• A condensation heat transfer model was 
successfully incorporated in a general purpose 
flow network code

• The numerical model considers solid-to-fluid heat 
transfer

• Soliman et al’s correlation of condensation heat 
transfer is recommended due to its generality and 
stability
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